THE IMPACT OF HPF DATA LAYOUT ON THE
DESIGN OF EFFICIENT AND MAINTAINABLE
PARALLEL LINEAR ALGEBRA LIBRARIES

CHRISTIAN H. BISCHOF,* STEVEN HUSS-LEDERMAN,**
ELAINE M. JACOBSON,** XTAOBAI SUN,* AND ANNA TSAO**

ABSTRACT

In this document, we are concerned with the effects of data layouts for nonsquare pro-
cessor meshes on the implementation of common dense linear algebra kernels such as
matrix-matrix multiplication, LU factorizations, or eigenvalue solvers. In particular, we
address ease of programming and tunability of the resulting software. We introduce a
generalization of the torus wrap data layout that results in a decoupling of “local” and
“global” data layout view. As a result, it allows for intuitive programming of linear algebra
algorithms and for tuning of the algorithm for a particular mesh aspect ratio or machine
characteristics. This layout is as simple as the proposed HPF layout but, in our opinion,
enhances ease of programming as well as ease of performance tuning. We emphasize that
we do not advocate that all users need be concerned with these issues. We do, however, be-
lieve, that for the foreseeable future “assembler coding” (as message-passing code is likely
to be viewed from a HPF programmers’ perspective) will be needed to deliver high perfor-
mance for computationally intensive kernels. As a result, we believe that the adoption of
this approach not only would accelerate the generation of efficient linear algebra software
libraries but also would accelerate the adoption of HPF as a result. We point out, however,
that the adoption of this new layout would necessitate that an HPF compiler ensure that

data objects are operated on in a consistent fashion across subroutine and function calls.

* Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,

IL 60439.
** Supercomputing Research Center, 17100 Science Drive, Bowie, MD 20715

This is Technical Report ANL/MCS-TM-184, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, March 1994.

1. Introduction.

In this document, we present a generalization of the torus wrap data layout for processor
arrays of arbitrary aspect ratio. This data layout is being investigated as part of the PRISM
(Parallel Research on Invariant Subspace Methods) project and has been effectively utilized
in the development of a highly efficient general code for matrix multiplication on the Intel
Touchstone Delta [7]. We propose that this data layout, which we call virtual 2-D torus
wrap, be considered for inclusion into the High Performance Fortran standard because we
believe it to have great potential in the design and development of dense linear algebra
algorithms. This data layout is a natural extension of the virtual contiguous block data
layout described in papers such as [8] and subsumes the block scattered decomposition
(e.g., [4]) currently being suggested for the HPF standard.

Virtual 2-D torus wrap was motivated by our desire to exploit the advantageous features
of block torus wrap (see, for example, [2, 6]), while at the same time maintaining the sim-
plicity and cost effectiveness of the communication patterns found in many algorithms for
square meshes. In particular, virtual 2-D torus wrap has the following desirable properties:
e Virtual 2-D torus wrap decouples the processor view from the physical mesh config-

uration, allowing the programmer to view a processor array of arbitrary aspect ratio

as a square mesh of processors. This simplifies algorithm design, reduces coding and
maintenance effort, and facilitates flexibility in multiprocessor utilization.

e Virtual 2-D torus wrap allows a variety of useful virtual to physical mappings of data, in-
cluding contiguous blocking and the block scattered decomposition currently supported
by the draft of the HPF standard. Code tuning can be achieved by simply varying this
mapping, without affecting the “node” code.

e The mapping used in our work, like the block scattered decomposition, is advanta-
geous for row- or column-oriented algorithms because it allows physical spreading of
row or column blocks across processor rows or columns. At the same time, symmetric
operations such as transposition and tridiagonalization are greatly simplified.

o Virtual 2-D torus wrap provides data layouts that maximize the granularity of local
computations by ensuring proper maximal alignment in algorithms such as the dis-
tributed matrix multiplication algorithms found in [8, 7]. Hence, this layout can make
full use of, for example, assembler-coded node BLAS or LAPACK routines.

In the remainder of this document, we first review torus wrap and the block-scattered
decomposition and then describe the virtual 2-D torus wrap data layout. We will use

simple examples to describe each of the data layouts presented.

2. 2-D Torus Wrap on Square Meshes.

0]11|2
314|5
6718

FIGURE 1. 3 x 3 mesh node numbering

Consider a 3 x 3 physical processor mesh, numbered (0, 1, ..., 8) as in Figure 1. Panel
the matrix A in both dimensions with panels of width r and s, respectively; this paneling
results in a decomposition of A into r x s blocks. We illustrate the data layout from two
different perspectives, for a matrix having six panels (0, 1, ..., §) in each dimension (i.e.,
A is a 6r x 6s matrix). Figure 2(a) (matrix point of view) shows the processor assignments
superimposed on the blocks of A; the template in Figure 1 is replicated until all blocks
have been assigned. The numbers at the left (top) edge of the processor mesh depicted in
Figure 2(b) (processor point of view) refer to the row (column) panels of the matrix and
show the processor row (column) in which each row (column) panel of A resides. Figure
2(b) also shows the actual local arrangement of blocks within each processor. In both
figures, the shaded blocks represent the diagonal blocks of the matrix when r = s. This
special case is used in algorithms such as the solution of triangular systems [5] and the
reduction of a symmetric matrix to tridiagonal form in [1, 9, 3]. Notice that in this case

the diagonal blocks lie in the processors along the diagonal of the processor array.

R N N
T

(a) Matrix point of view (b) Processor point of view

FIGURE 2. Data distribution for 2-D torus wrap

3. Generalization of the Data Layout.

We now describe two generalizations of this data layout for nonsquare processor meshes:
the block-scattered decomposition, which is currently suggested for inclusion in the High
Performance Fortran (HPF) standard, and the virtual 2-D torus wrap, which we suggest

as an alternative.

3.1 Block-Scattered Decomposition.

Consider a 3 x 2 physical processor mesh numbered O, 1, ..., 5 as in Figure 3.

0 1
2 3
4 5

FIGURE 3. 3 x 2 mesh node numbering

.0.2468101357911

g/1]0]1]o|1]o[1]0[1]O]1 N T
213]2]3]2|3]2|3]2[3]2]3) DR SRR B
4514/5]4|5]4/5]14|5]4 |5 6__:__:_ﬂ'f_f.f;'_'r___:__:_T'_L_:__
O/1]O|140[1]0|1]O[1]0]|1 91 + IR EE
2[3]2]3]2]3]|2]3]2]3]2][3 A
415]4[5]4[5]4/5]415]4 5 7S B P
O[1]o110|10:1]0|1]0]|1 7__:__:_J_l_L,___:__:_%ifL_:__
213]2(3]2]3]2|3]2]3]2]3 o e
415]415]14|5]4|5]4]5]4|5 2 o o o L
o[1Jol1]JoJ1Jol1]olt]ol1 2 DR N S
2131213123232 |3}F213 LN R B
451415141514 /514 514 |5 I oo

(a) Matrix point of view (b) Processor point of view

FIGURE 4. Data distribution for block-scattered decomposition

Panel the matrix A in both dimensions to obtain r x s blocks. We illustrate using a
matrix having 12 panels (0, 1, ..., 11) in each dimension (i.e., A is a 12r x 12s matrix).
Figures 4(a) and 4(b) give the matrix and processor points of view, respectively. Again,

the shaded blocks represent the diagonal blocks of the matrix when r = s. Notice that the

diagonal blocks of the matrix are spread out all over the mesh and, in particular, are not

generally in contiguous rows or columns of memory.

3.2 Virtual 2-D Torus Wrap.
Again consider a 3 x 2 physical processor mesh as shown in Figure 5(a). For virtual 2-D
torus wrap, we virtualize the physical mesh to a 6 x 6 square mesh. Figure 5(b) shows the
two-dimensional processor numbering for the resulting virtualized mesh. Note that we can
actually virtualize a p X ¢ to a o X « mesh where the least common multiple of p and ¢

divides «. Panels are then assigned as if on a o X o mesh.

R) 00]01(02]03]04 |05
v B 10(11[12]13/14|15
20]21 (222312425
2 3
30(31(32]33(34|35
] _ 40141 42434445
* v 505152535455
(a) 3 x 2 physical mesh (b) Virtualized as 6 x 6 mesh

FIGURE 5. Virtualized 3 x 2 mesh

If we distribute the panels in torus-wrap fashion, namely, the 6 x 6 template in Figure 5
is replicated over the blocks of A, we have a virtual analog of torus wrap. The latter results
in the matrix and processor points of view depicted in Figure 6, for the same example used
in the block-scattered decomposition. The matrix is arranged in memory so that the data
corresponding to all virtual processors within a node is stored in a contiguous buffer. This
arrangement allows the user to achieve maximal granularity in block algorithms. Notice
that if r = (# rows of A)/6 and s = (# columns of A)/6, we have the contiguous block
data layout [8].

An important point to realize is that successive panels in each dimension can be assigned
to virtual processors arbitrarily. A very useful case occurs when panels are assigned with
a “virtual panel spacing” in each dimension, s, and s.. Panels are assigned consecutively

so that panel ¢ in the row dimension is assigned to row virtual processor

&med%>+<héﬂ mﬁ&).

0 6 1.7 2 838 9 41095 11

% 1 0 1 Z iﬁ%}p;—@———ez—-—es—-—94———95—
ot 13 9 3 ; -—1:{}—:—5*—1%1;—:;;—1.—2—-—1.3—-—}4———}.5—
45—t 14 5 i 20 - 21 -92.{-23- | -24- 25 -
RN ENEENE) P
2 3 2 3 140 40 - 41| 42-1-48- {44 |45 -
4 5 4 5 151 50 |- 1|~ 52-{-53- 1 -54- 55
Matrix point of view Processor point of view
FIGURE 6. Virtual torus wrap
0 68917 41028 51l 0 628 4101 75 95 1l
Z iﬁ*{i)p;;—{)r1———92—-—(-)3—-—94———&:5— Z iﬁ%}p;—m———ez—-—es—-—94———95—
, -—1:{}—:—’5—1}1;—,;—1.—2—- gt -—1:{}—:—’5—1}1;—:;;—1.—2—- 33 {-H4-¥5 -
; nE P T DO I I
7 | | 0|~ 0 :
4 I 35- i I
10 1 l 7 l l l R l
i M) |- 41 |- 42- - 43- {dd - 45 - z 40 - 41| 42-1-43- {44 |45 -
st T s M
Panel spacing = 2 Panel spacing = 3

FIGURE 7. Physical row or column panel wrap from processor point of view

In the above expression, |*| denotes the greatest integer function. Panels are assigned in
the column dimension analogously, substituting s. for s, in the formula above. Qualita-
tively, virtual panel spacing is the number of virtual processors to the next panel.

Some algorithms are row-oriented (column-oriented) and achieve better performance
and load balancing when successive row (column) panels lie in different physical processors.
This physical spreading of rows (columns) across physical rows (columns) of the mesh can

be accommodated by choosing the virtual panel spacing in the row (column) dimension

to be the number of virtual processors per node in that direction. Figure 7(a) illustrates

physical spreading of row panels by choosing s, = s, = 2 («/p), and Figure 7(b) illustrates

physical spreading of column panels by choosing s, = s, = 3 («/¢q). We note that for s, =

S¢, this data layout preserves the symmetric placement of indices onto virtual processors.

In fact, the “local processor view” in Figures 6 and 7 1s identical, even though the overall

load-balancing properties of the algorithms are likely to be different. We see three main

advantages resulting from this property:

o Global data reorderings, or changes in block size, as motivated by considerations relating
the behavior of an algorithm to the particular mesh aspect ratio, do not affect the “node
code.”

e Symmetric operations such as transposition and tridiagonalization are straightforward,
since each virtual processor behaves as if it were a physical processor on a square mesh.

o Row and column indices are naturally aligned for matrix operands in algorithms such
as the distributed matrix multiplication algorithms in [8, 7].

Notice that our first example of virtual 2-D torus wrap in Figure 6 has a virtual panel
spacing equal to one; furthermore, if s, = 2 and s. = 3, or in general, s, = «/q and
sc = a/p, we obtain the block-scattered decomposition (up to local storage differences).
The four special cases of virtual 2-D torus wrap discussed in this document are the only
ones that currently appear to be useful, but further study of this is required. Note that
the adoption of “spaced” 2-D torus wrap would necessitate that an HPF compiler ensure
that data objects laid out with different panel spacings are operated on in a consistent

fashion across subroutine and function calls.

4. A Single General Framework.

As we have seen, the extension of the HPF draft discussed in this document has several
desirable attributes. Since “spaced” virtual 2-D torus wrap is a superset of the proposed
HPF block-scattered decomposition, adoption of this proposal would provide the function-

ality of all the special cases discussed above under a single general framework.

REFERENCES

. Anderson, E.; A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de
Geijn, LAPACK for distributed memory architectures: Progress report, Fifth STAM Conference on
Parallel Processing for Scientific Computing, Houston, STAM, 1991.

. Ashcraft, C. C.,| The distributed solution of linear systems using the torus wrap data mapping, Engi-
neering Computing and Analysis Technical Report ECA-TR-147, Boeing Computer Services (1990).

. Bischof, C., M. Marques, and X. Sun, Parallel bandreduction and tridiagonalization, Proceedings,
Sixth STAM Conference on Parallel Processing for Scientific Computing (R. F. Sincovec, ed.), STAM,
Philadelphia, 1993, (also PRISM Working Note #38).

. Choi, J., J. J. Dongarra, R. Pozo, and D. W. Walker, ScaLAPACK: A scalable linear algebra li-
brary for distributed memory concurrent computers, Proceedings, Fourth Symposium on the Frontiers
of Massively Parallel Computation, IEEE Computer Society Press, Los Alamitos, California, 1992,
pp. 120-127.

. Choti, J.; J. J. Dongarra, and D. W. Walker, Level 3 BLAS for distributed memory concurrent com-
puters, CNRS-NSF Workshop on Environments and Tools for Parallel Scientific Computing, Elsevier
Science Publishers, 1992.

. Hendrikson, B., and D. Womble, The torus-wrap mapping for dense matriz calculations on massively
parallel computers, SAND92-0792, Sandia National Laboratories (1992).

. Huss-Lederman, S., E. M. Jacobson, A. Tsao, and G. Zhang, Matriz Multiplication on the Intel Touch-
stone Delta, Proceedings, Sixth STAM Conference on Parallel Processing for Scientific Computing (R.
F. Sincovec, ed.), SIAM, Philadelphia, 1993, (Summary of results also appeared in FY 1991-1992
Annual Report of the the Concurrent Supercomputing Consortium; expanded version appeared as
Technical Report SRC-TR-93-101, Supercomputing Research Center, 1993; also PRISM Working Note
#7)..

. Mathur, K. K., and S. L. Johnsson, Multiplication of matrices of arbitrary shape on a data parallel
computer (1992), Thinking Machines Corporation, Technical Report TR-216.

. Van de Geijn, R. A., Massiwely parallel LINPACK benchmark on the Intel Touchstone Delta and
1PSC/860 systems: Progress Report, Computer Science Technical Report TR-91-28, University of
Texas (1991).

